Target locating


Locating your target can be done by going over your target then go over it again, listening carefully you can hear the target pass the front then the rear of the rug. Stopping quickly mark the location. Then at a 90º angle go over it again repeating that previous procedure. By triangulating it is possible to get very close. Moving one side to another gets it even closer. The rug has a very columnar detection pattern so it is very accurate. If you want to get even closer a swinger metal detector is your best choice (most will pinpoint very accurately). Some of them discriminate and some detect gold very well. But none of them go very deep so if they aren't detecting your target then it may be to deep to detect with the small detector. Most targets are worth digging as a target passed up may be the one that is most valuable. There may be more than one target in a location giving all detectors a false reading.


Best of luck, find your treasures today.

HotFoot  RUG  Detector

North, south approach is best as the earth creates a field (halo) that is aligned with that axis.


P.I. (Pulse Induction)

Transmitter

The transmitter circuitry consists of a simple electronic switch which briefly connects this coil across the battery in the metal detector. The resistance of the coil is very low, which allows a current of several amperes to flow in the coil. Even though the current is high, the actual time it flows is very brief. Pulse Induction metal detectors switch on a pulse of transmit current, then shut off, then switch on another transmit pulse. The duty cycle, the time the transmit current is on with reference to the time it is off, is typically about 4%. This prevents the transmitter and coil from overheating and reduces the drain on the battery.

The pulse repetition rate (transmit frequency) of a typical PI is about 100 pulses per second. Models have been produced from a low of 22 pulses per second to a high of several thousand pulses per second. Lower frequencies usually mean greater transmit power. The transmit current flows for a much longer time per pulse however, there are fewer pulses per second. Higher frequencies usually mean a shorter transmit pulse and less power however, there are more transmit pulses per second.

Receiver

Resistance is placed across the search coil to control the time it takes the reflected pulse to decay to zero. If no resistance, or very high resistance is used, it will cause the reflected pulse to "ring". The result is similar to dropping a rubber ball onto a hard surface, it will bounce several times before returning to rest. If a low resistance is used the decay time will increase and cause the reflected pulse to widen. It is similar to dropping a rubber ball onto a pillow. Since we are interested in having it bounce once critical damping for a rubber ball might be like dropping it onto carpet. A PI coil is said to be critically damped when the reflected pulse decays quickly to zero without ringing. An over or under dampened coil will cause instability and or mask the fast conducting metals such as gold as well as reduce detection depth.

When a metal object nears the loop it will store some of the energy from the reflected pulse and will increase the time it takes for the pulse to decay to zero. The change in the width of the reflected pulse is measured to signal the presents of a metal target.

In order to detect a metal object we need to concern ourselves with the portion of the reflected pulse where it decays to zero. The transmit coil is coupled to the receiver through a resister and a diode clipping circuit. The diodes limit the amount of transmit coil voltage reaching the receiver to less than one volt so as not to overload it. The signal from the receiver contains both the transmit pulse and the reflected pulse. The receiver has a typical gain of 60 decibels. This means the area where the reflected pulse reaches zero is amplified 1,000 times.

Sampling Circuit

The amplified signal coming from the receiver is connected to a switching circuit which samples the reflected portion of the pulse as it reaches zero. The reflected pulse up to this point references in actuality a series of pulses at the transmit frequency. When a metal object nears the coil the transmit portion of the signal will remain unchanged while the reflected portion of the pulse will become wider. The metal object stores some of the electrical energy from the transmit pulse and increases the time it takes for the reflected pulse to reach zero. An increase in duration of a few millionths of a second is enough to allow the detection of a metal target. The reflected pulse is sampled with an electronic switch controlled by a series of pulses which are synchronized with the transmitter.

The most sensitive sampling point on the reflected pulse is as near as possible to the point where it reaches zero. This is typically about 20 millionths of a second after the transmitter shuts off and the reflected pulse begins. Unfortunately, this is also the area where a PI can become unstable. For this reason most PI models sample the reflected pulse at a decay of 30 or 40 millionths of a second, well after it decays to zero.

Integrator

In order for an object to be detected the sample signals must be converted to a DC voltage. This task is performed by a circuit called an integrator. It averages the sampled pulses over time to provide a reference voltage. This DC reference voltage increases when metal nears the coil, then decreases as the object moves away. The DC voltage is amplified and controls the audio output circuitry which increases in pitch and/or volume to signal the presents of metal.

The time constant of the integrator determines how quickly the metal detector will respond to a metal object. A long time constant (in the range of seconds) has the advantage of reducing noise and making the metal detector easier to tune. Long time constants require a very slow sweep of the coil because a target might be missed if it passes quickly by the search coil. Short time constants (in the range of tenths of a second) respond more quickly to targets. This allows a quicker sweep of the loop however, it also allows more noise and instability.

Discrimination

PI metal detectors are not capable of the same degree of discrimination as VLF metal detectors.

By increasing the time period between transmitter shut-off and the sampling point (pulse delay), certain metal items can be rejected. Aluminum foil will be the first to be rejected followed by nickel, pull tabs and gold. Some coins can be rejected at very long sample delays however, iron cannot be rejected.

There have been many attempts to design a PI that can reject iron however these attempts have had limited results.   Iron is detectable at very long time delays however, silver and copper have similar characteristics. Such long time delays also have a negative affect on detection depth. The Impulse Digital DD has advanced circuitry witch doesn't sacrifice depth for it's discrimination. Ground mineralization will cause some widening of the reflected pulse as well, changing the point at which a target responds or rejects. If the time delay is adjusted so that a gold ring doesn't respond in an air test, that same ring may respond in mineralized ground. Mineralized ground thus changes everything regarding the time delays and discrimination of PI metal detectors.

Ground Balance

Ground balancing, while very critical on VLF metal detectors, is not necessary with PI circuits. Average ground mineralization will not store any appreciable amount of energy from the search coil and will not usually produce a signal. Such ground will not mask the signal from a buried object. On the contrary, ground mineralization will add slightly to the duration of the reflected pulse increasing the depth of detection. The term "automatic ground balance" is often applied to PI instruments because it will normally not react to mineralization and there are no external adjustments for any specific ground conditions.

Heavy black sand is an exception. It will cause a VLF coil to overload, making metal detector penetration poor at best. A PI detector will work in black sand however, some false signals may result if the coil is held very close to the ground. Ground responses can be minimized by using a longer time delay between the shut-off and sample point (pulse delay). Advancing the time delay slightly will help to smooth out the noises caused by most mineralization.

Automatic vs. Manual Tuning

Most PI detectors are manually tuned. This means the operator has to adjust a control until a clicking or buzzing sound is heard in the headphones. If the search conditions change, such as when moving from black sand to neutral sand or from dry land to salt water, the tuning must be re-adjusted. Failure to do so can result in reduced detection depth and missed targets. Manual tuning is very difficult with short integration time constants, so most manually tuned models use long time constants and the search coil must be swept slowly.

This is not a problem when a PI is used for scuba diving because the coil cannot be swept quickly underwater. When used at the surf line, where the coil will be in and out of salt water, a manually tuned metal detector can be very frustrating to use. The tuner must be adjusted continually to maintain a threshold. Some operators elect to set it slightly below the threshold however, that can result in a reduction in depth as the ground conditions change.

Automatic tuning, or S.A.T. (Self Adjusting Threshold) offers a significant advantage when searching in and out of salt water or over mineralized ground. S.A.T. helps keep the metal detector operating at maximum sensitivity without requiring constant adjustments by the operator. It improves the stability, reduces noise, and allows higher gain settings to be used. PI metal detectors do not emit strong, negative signals like a VLF. As such they do not "overshoot" on pockets of mineralization. With S.A.T. the coil must be kept in motion while detecting a target. Stopping over a target will cause the S.A.T. to tune it out or cease responding.

Audio Circuits

PI audio circuits generally fall into two categories: variable pitch and variable volume. Variable pitch or V.C.O. (Voltage Controlled Oscillator) audio has the advantage for faint targets because the change in pitch is easier to hear than a change in volume at lower audio levels. This is primarily true for manually tuned models. The "fire siren" sounds can become annoying and many have trouble hearing the higher tones. A variant of this is the mechanical vibrator device primarily used for deep water. It emits a slow clicking sound and vibration that increases to a buzz to signal a find. The mechanical device is easier to hear and feel over the sound of an underwater air supply.

Many people prefer a more conventional audio tone that increases in volume rather than pitch to signal a find. This audio system works best with a PI metal detector that has a fast target response and automatic tuning (S.A.T.). Automatic tuning makes the PI sound and respond similar to a typical VLF metal detector.

PI Summary Pulse Induction metal detectors are specialized instruments. They are generally not suitable for coin hunting urban areas because they do not have the ability to identify or reject ferrous (iron) trash (except the IMPULSE DIGITAL DD ). They can be used for relic hunting in rural areas where iron trash is not present in large quantities, or is desired. They are intended for maximum depth under extreme search conditions such as salt water beaches and highly mineralized ground. In such conditions PI type metal detectors produce superior results when compared to VLF models, particularly in the ability to ignore such extreme ground and penetrate it for maximum depth.


Happy hunting and good luck although the luck is improved when the RUG is part of the equation.

Reconnaissance Under Ground

Technique and practice works for finding gold as Rod demonstrates.

Using a swinger to locate or pinpoint a gold nugget after discovering it with the Rug.

First time at the site

discovering a meteorite.   

3 ft. Rug
4 ft. Rug

Second time at the site

discovering another meteorite.   

6 ft. Rug
18 in. RugContact_us.htmlContact_us.htmlshapeimage_5_link_0
Contact usAbout_us_1.htmlAbout_us_1.htmlshapeimage_6_link_0
AlbumPhoto_albums/Photo_albums.htmlPhoto_albums/Photo_albums.htmlshapeimage_7_link_0
Home pageDelta_Pulse.htmlDelta_Pulse.htmlshapeimage_8_link_0
About usused_equipment.htmlused_equipment.htmlshapeimage_9_link_0
More video'sAccessory.htmlAccessory.htmlshapeimage_10_link_0
About usGolden_Mask.htmlGolden_Mask.htmlshapeimage_11_link_0
HotFoot  RUG  DetectorDeep_Hunter.htmlDeep_Hunter.htmlshapeimage_12_link_0
AccessoryGM_Coils.htmlGM_Coils.htmlshapeimage_13_link_0
Used EquipmentHotfootrug_Metal_detector.htmlHotfootrug_Metal_detector.htmlshapeimage_14_link_0
Delta PulseRug_Packages.htmlRug_Packages.htmlshapeimage_15_link_0

Questions, technical support or orders

Tim 702-786-4288

Bill 208-995-1749

Rod 307-733-1554

Why the RUGWhy_the_RUG.htmlWhy_the_RUG.htmlshapeimage_16_link_0